编辑“
离散选择法
”
跳转到导航
跳转到搜索
警告:
您没有登录。如果您做出任意编辑,您的IP地址将会公开可见。如果您
登录
或
创建
一个账户,您的编辑将归属于您的用户名,且将享受其他好处。
反垃圾检查。
不要
加入这个!
'''离散选择法'''('''''Discrete choice approach''''',缩写'''''DCA''''',也作'''''Discrete choice model''''',即“离散选择模型”)属于[[多重变量分析]]的方法之一,是[[社会学]]、[[生物统计学]]、[[数量心理学]]、[[市场营销]]等[[统计]]实证分析的常用方法。 ==假设== ==目标== 离散选择法的目标是通过(特定个体的或者特定类别的)[[协变量]]解释所观察到的在离散对象中进行的抉择。 ==应用领域举例== *与一组实行[[安慰剂]]治疗的[[对照组]](Control group)进行比较,看治疗方法是否成功 *解释妇女的工作行为 *选择某一专业学习 *在一揽子商品中对某一商品的购买决策 *[[情景条件]]下的[[市场份额]]建模 *根据“回忆者”(表现出来)的特征衡量广告活动的成功 *解释[[顾客价值]]概念(分类模型) *[[顾客满意度]]研究(分类模型) ==临界值模型的假设== *个体行为能够通过一个不可观察的(隐藏)变量y<sub>n</sub><sup>*</sup>来调控 *y<sub>n</sub><sup>*</sup>线性依赖于[[协变量]] *二元变量假定依赖于y<sub>n</sub><sup>*</sup>的水平 *不可观察的临界值c在识别基础o.B.d.A上设为0 *分布函数F(·)是[[逻辑正态分布]]或者[[正态分布]] *[[Logit模型]]:<math>\mathrm{P}(y_n=1|x_n)=\frac{\exp(b_0+b_1X_1+\dots+b_kX_k)}{1+\exp(b_0+b_1X_1+\dots+b_kX_k)}</math> *[[Probit模型]]: ==随机效用模型的假设== *存在r≥2个未排序的对象,在其中个体中于该时点选出一个 *每个对象有自己的效用 *效用不能完整的观察, ==参见== *[[多重变量分析]] ==外部链接== {{Marketing-stub}} [[category:统计学]] [[category:市场营销]] [[category:社会学]] [[category:心理学]] [[category:生物学]]
摘要:
请注意,您对Positive WiKi的所有贡献都可能被其他贡献者编辑,修改或删除。如果您不希望您的文字被任意修改和再散布,请不要提交。
您同时也要向我们保证您所提交的内容是您自己所作,或得自一个不受版权保护或相似自由的来源(参阅
Positive WiKi:版权
的细节)。
未经许可,请勿提交受版权保护的作品!
取消
编辑帮助
(在新窗口中打开)
本页使用的模板:
Template:Asbox
(
编辑
)
Template:Hlist/styles.css
(
编辑
)
Template:IfPNS
(
编辑
)
Template:Main other
(
编辑
)
Template:Marketing-stub
(
编辑
)
Module:Arguments
(
编辑
)
Module:Asbox
(
编辑
)
Module:Buffer
(
编辑
)
Module:Lan2
(
编辑
)
Module:Namespace
(
编辑
)
Module:Namespace/data
(
编辑
)
Module:Navbar
(
编辑
)
Module:Navbar/configuration
(
编辑
)
Module:Navbar/styles.css
(
编辑
)
导航菜单
个人工具
未登录
讨论
贡献
创建账号
登录
命名空间
页面
讨论
不转换
不转换
简体
繁體
大陆简体
香港繁體
澳門繁體
大马简体
新加坡简体
臺灣正體
查看
阅读
编辑
编辑源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
工具
链入页面
相关更改
特殊页面
页面信息